direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C23⋊D10, C24⋊6D10, C10⋊2C22≀C2, D10⋊12(C2×D4), (C2×D4)⋊35D10, (C2×C20)⋊9C23, (D5×C24)⋊3C2, (C22×D4)⋊5D5, (C22×D5)⋊15D4, (C22×C4)⋊26D10, (C22×C10)⋊11D4, C23⋊6(C5⋊D4), C23⋊3(C22×D5), (D4×C10)⋊55C22, (C22×C10)⋊5C23, (C2×Dic5)⋊3C23, C22.146(D4×D5), (C2×C10).294C24, (C23×C10)⋊12C22, (C22×C20)⋊43C22, C10.141(C22×D4), (C23×D5)⋊21C22, C23.D5⋊60C22, D10⋊C4⋊71C22, C22.307(C23×D5), (C22×Dic5)⋊32C22, (C22×D5).248C23, C5⋊3(C2×C22≀C2), (D4×C2×C10)⋊15C2, (C2×C10)⋊7(C2×D4), C2.101(C2×D4×D5), (C2×C4)⋊4(C22×D5), C22⋊3(C2×C5⋊D4), (C2×C5⋊D4)⋊43C22, (C22×C5⋊D4)⋊12C2, (C2×C23.D5)⋊27C2, (C2×D10⋊C4)⋊41C2, C2.14(C22×C5⋊D4), SmallGroup(320,1471)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C23⋊D10
G = < a,b,c,d,e,f | a2=b2=c2=d2=e10=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ebe-1=bd=db, fbf=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 2782 in 662 conjugacy classes, 143 normal (19 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, D5, C10, C10, C10, C22⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C22≀C2, C22×D4, C22×D4, C25, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C22×D5, C22×D5, C22×C10, C22×C10, C22×C10, C2×C22≀C2, D10⋊C4, C23.D5, C22×Dic5, C2×C5⋊D4, C2×C5⋊D4, C22×C20, D4×C10, D4×C10, C23×D5, C23×D5, C23×C10, C2×D10⋊C4, C23⋊D10, C2×C23.D5, C22×C5⋊D4, D4×C2×C10, D5×C24, C2×C23⋊D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22≀C2, C22×D4, C5⋊D4, C22×D5, C2×C22≀C2, D4×D5, C2×C5⋊D4, C23×D5, C23⋊D10, C2×D4×D5, C22×C5⋊D4, C2×C23⋊D10
(1 52)(2 53)(3 54)(4 55)(5 56)(6 57)(7 58)(8 59)(9 60)(10 51)(11 35)(12 36)(13 37)(14 38)(15 39)(16 40)(17 31)(18 32)(19 33)(20 34)(21 63)(22 64)(23 65)(24 66)(25 67)(26 68)(27 69)(28 70)(29 61)(30 62)(41 71)(42 72)(43 73)(44 74)(45 75)(46 76)(47 77)(48 78)(49 79)(50 80)
(1 80)(2 17)(3 72)(4 19)(5 74)(6 11)(7 76)(8 13)(9 78)(10 15)(12 29)(14 21)(16 23)(18 25)(20 27)(22 79)(24 71)(26 73)(28 75)(30 77)(31 53)(32 67)(33 55)(34 69)(35 57)(36 61)(37 59)(38 63)(39 51)(40 65)(41 66)(42 54)(43 68)(44 56)(45 70)(46 58)(47 62)(48 60)(49 64)(50 52)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 80)(12 71)(13 72)(14 73)(15 74)(16 75)(17 76)(18 77)(19 78)(20 79)(21 26)(22 27)(23 28)(24 29)(25 30)(31 46)(32 47)(33 48)(34 49)(35 50)(36 41)(37 42)(38 43)(39 44)(40 45)(51 56)(52 57)(53 58)(54 59)(55 60)(61 66)(62 67)(63 68)(64 69)(65 70)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 21)(10 22)(11 75)(12 76)(13 77)(14 78)(15 79)(16 80)(17 71)(18 72)(19 73)(20 74)(31 41)(32 42)(33 43)(34 44)(35 45)(36 46)(37 47)(38 48)(39 49)(40 50)(51 64)(52 65)(53 66)(54 67)(55 68)(56 69)(57 70)(58 61)(59 62)(60 63)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 27)(2 26)(3 25)(4 24)(5 23)(6 22)(7 21)(8 30)(9 29)(10 28)(11 74)(12 73)(13 72)(14 71)(15 80)(16 79)(17 78)(18 77)(19 76)(20 75)(31 48)(32 47)(33 46)(34 45)(35 44)(36 43)(37 42)(38 41)(39 50)(40 49)(51 70)(52 69)(53 68)(54 67)(55 66)(56 65)(57 64)(58 63)(59 62)(60 61)
G:=sub<Sym(80)| (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,51)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,31)(18,32)(19,33)(20,34)(21,63)(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,61)(30,62)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80), (1,80)(2,17)(3,72)(4,19)(5,74)(6,11)(7,76)(8,13)(9,78)(10,15)(12,29)(14,21)(16,23)(18,25)(20,27)(22,79)(24,71)(26,73)(28,75)(30,77)(31,53)(32,67)(33,55)(34,69)(35,57)(36,61)(37,59)(38,63)(39,51)(40,65)(41,66)(42,54)(43,68)(44,56)(45,70)(46,58)(47,62)(48,60)(49,64)(50,52), (1,6)(2,7)(3,8)(4,9)(5,10)(11,80)(12,71)(13,72)(14,73)(15,74)(16,75)(17,76)(18,77)(19,78)(20,79)(21,26)(22,27)(23,28)(24,29)(25,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,41)(37,42)(38,43)(39,44)(40,45)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,75)(12,76)(13,77)(14,78)(15,79)(16,80)(17,71)(18,72)(19,73)(20,74)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,49)(40,50)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,70)(58,61)(59,62)(60,63), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,30)(9,29)(10,28)(11,74)(12,73)(13,72)(14,71)(15,80)(16,79)(17,78)(18,77)(19,76)(20,75)(31,48)(32,47)(33,46)(34,45)(35,44)(36,43)(37,42)(38,41)(39,50)(40,49)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(57,64)(58,63)(59,62)(60,61)>;
G:=Group( (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,51)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,31)(18,32)(19,33)(20,34)(21,63)(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,61)(30,62)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80), (1,80)(2,17)(3,72)(4,19)(5,74)(6,11)(7,76)(8,13)(9,78)(10,15)(12,29)(14,21)(16,23)(18,25)(20,27)(22,79)(24,71)(26,73)(28,75)(30,77)(31,53)(32,67)(33,55)(34,69)(35,57)(36,61)(37,59)(38,63)(39,51)(40,65)(41,66)(42,54)(43,68)(44,56)(45,70)(46,58)(47,62)(48,60)(49,64)(50,52), (1,6)(2,7)(3,8)(4,9)(5,10)(11,80)(12,71)(13,72)(14,73)(15,74)(16,75)(17,76)(18,77)(19,78)(20,79)(21,26)(22,27)(23,28)(24,29)(25,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,41)(37,42)(38,43)(39,44)(40,45)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,75)(12,76)(13,77)(14,78)(15,79)(16,80)(17,71)(18,72)(19,73)(20,74)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,49)(40,50)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)(57,70)(58,61)(59,62)(60,63), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,30)(9,29)(10,28)(11,74)(12,73)(13,72)(14,71)(15,80)(16,79)(17,78)(18,77)(19,76)(20,75)(31,48)(32,47)(33,46)(34,45)(35,44)(36,43)(37,42)(38,41)(39,50)(40,49)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(57,64)(58,63)(59,62)(60,61) );
G=PermutationGroup([[(1,52),(2,53),(3,54),(4,55),(5,56),(6,57),(7,58),(8,59),(9,60),(10,51),(11,35),(12,36),(13,37),(14,38),(15,39),(16,40),(17,31),(18,32),(19,33),(20,34),(21,63),(22,64),(23,65),(24,66),(25,67),(26,68),(27,69),(28,70),(29,61),(30,62),(41,71),(42,72),(43,73),(44,74),(45,75),(46,76),(47,77),(48,78),(49,79),(50,80)], [(1,80),(2,17),(3,72),(4,19),(5,74),(6,11),(7,76),(8,13),(9,78),(10,15),(12,29),(14,21),(16,23),(18,25),(20,27),(22,79),(24,71),(26,73),(28,75),(30,77),(31,53),(32,67),(33,55),(34,69),(35,57),(36,61),(37,59),(38,63),(39,51),(40,65),(41,66),(42,54),(43,68),(44,56),(45,70),(46,58),(47,62),(48,60),(49,64),(50,52)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,80),(12,71),(13,72),(14,73),(15,74),(16,75),(17,76),(18,77),(19,78),(20,79),(21,26),(22,27),(23,28),(24,29),(25,30),(31,46),(32,47),(33,48),(34,49),(35,50),(36,41),(37,42),(38,43),(39,44),(40,45),(51,56),(52,57),(53,58),(54,59),(55,60),(61,66),(62,67),(63,68),(64,69),(65,70)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,21),(10,22),(11,75),(12,76),(13,77),(14,78),(15,79),(16,80),(17,71),(18,72),(19,73),(20,74),(31,41),(32,42),(33,43),(34,44),(35,45),(36,46),(37,47),(38,48),(39,49),(40,50),(51,64),(52,65),(53,66),(54,67),(55,68),(56,69),(57,70),(58,61),(59,62),(60,63)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,27),(2,26),(3,25),(4,24),(5,23),(6,22),(7,21),(8,30),(9,29),(10,28),(11,74),(12,73),(13,72),(14,71),(15,80),(16,79),(17,78),(18,77),(19,76),(20,75),(31,48),(32,47),(33,46),(34,45),(35,44),(36,43),(37,42),(38,41),(39,50),(40,49),(51,70),(52,69),(53,68),(54,67),(55,66),(56,65),(57,64),(58,63),(59,62),(60,61)]])
68 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | ··· | 2U | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 10A | ··· | 10N | 10O | ··· | 10AD | 20A | ··· | 20H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 10 | ··· | 10 | 4 | 4 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | D10 | D10 | D10 | C5⋊D4 | D4×D5 |
kernel | C2×C23⋊D10 | C2×D10⋊C4 | C23⋊D10 | C2×C23.D5 | C22×C5⋊D4 | D4×C2×C10 | D5×C24 | C22×D5 | C22×C10 | C22×D4 | C22×C4 | C2×D4 | C24 | C23 | C22 |
# reps | 1 | 2 | 8 | 1 | 2 | 1 | 1 | 8 | 4 | 2 | 2 | 8 | 4 | 16 | 8 |
Matrix representation of C2×C23⋊D10 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
23 | 36 | 0 | 0 | 0 | 0 |
40 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 23 | 40 | 0 | 0 |
0 | 0 | 36 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 40 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
35 | 6 | 0 | 0 | 0 | 0 |
34 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 35 | 35 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 36 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 5 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[23,40,0,0,0,0,36,18,0,0,0,0,0,0,23,36,0,0,0,0,40,18,0,0,0,0,0,0,0,40,0,0,0,0,40,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[35,34,0,0,0,0,6,0,0,0,0,0,0,0,0,35,0,0,0,0,7,35,0,0,0,0,0,0,40,0,0,0,0,0,0,1],[40,0,0,0,0,0,36,1,0,0,0,0,0,0,1,5,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40] >;
C2×C23⋊D10 in GAP, Magma, Sage, TeX
C_2\times C_2^3\rtimes D_{10}
% in TeX
G:=Group("C2xC2^3:D10");
// GroupNames label
G:=SmallGroup(320,1471);
// by ID
G=gap.SmallGroup(320,1471);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,675,297,12550]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^10=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations